Detalhes do Documento

Comparative assessment of antibiotic susceptibility of coagulase-negative staph...

Autor(es): Cerca, Nuno cv logo 1 ; Martins, Silvia cv logo 2 ; Cerca, Filipe cv logo 3 ; Jefferson, Kimberly K. cv logo 4 ; Pier, Gerald B. cv logo 5 ; Oliveira, Rosário cv logo 6 ; Azeredo, Joana cv logo 7

Data: 2005

Identificador Persistente: http://hdl.handle.net/1822/3648

Origem: RepositóriUM - Universidade do Minho

Assunto(s): Nosocomial infections; Pathogens; Biofilms; Antibiotic resistance; CoNS


Descrição
Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy Objectives: To quantitatively compare the antibiotic susceptibility of biofilms formed by the coagulasenegative staphylococci (CoNS) Staphylococcus epidermidis and Staphylococcus haemolyticus with the susceptibility of planktonic cultures. Methods: SeveralCoNSstrains were grown planktonically or as biofilms to determine the effect of themode of growth on the level of susceptibility to antibiotics with different mechanisms of action. The utility of a new, rapid colorimetric method that is based on the reduction of a tetrazolium salt (XTT) to measure cell viability was tested by comparison with standard bacterial enumeration techniques. A 6 h kinetic study was performed using dicloxacillin, cefazolin, vancomycin, tetracycline and rifampicin at the peak serum concentration of each antibiotic. Results: In planktonic cells, inhibitors of cell wall synthesis were highly effective over a 3 h period. Biofilms were much less susceptible than planktonic cultures to all antibiotics tested, particularly inhibitors of cell wall synthesis. The susceptibility to inhibitors of protein and RNA synthesis was affected by the biofilm phenotype to a lesser degree. Standard bacterial enumeration techniques and the XTT method produced equivalent results both in biofilms and planktonic assays. Conclusions: This study provides a more accurate comparison between the antibiotic susceptibilities of planktonic versus biofilm populations, because the cell densities in the two populations were similar and because we measured the concentration required to inhibit bacterial metabolism rather than to eradicate the entire bacterial population. While the biofilm phenotype is highly resistant to antibiotics that target cell wall synthesis, it is fairly susceptible to antibiotics that target RNA and protein synthesis.
Tipo de Documento Artigo
Idioma Inglês
delicious logo  facebook logo  linkedin logo  twitter logo 
degois logo
mendeley logo

Documentos Relacionados



    Financiadores do RCAAP

Fundação para a Ciência e a Tecnologia Universidade do Minho   Governo Português Ministério da Educação e Ciência Programa Operacional da Sociedade do Conhecimento União Europeia