Detalhes do Documento

Water absorption and degradation characteristics of chitosan-based polyesters a...

Autor(es): Correlo, V. M. cv logo 1 ; Pinho, Elisabete D. cv logo 2 ; Pashkuleva, I. cv logo 3 ; Bhattacharya, Mrinal cv logo 4 ; Neves, N. M. cv logo 5 ; Reis, R. L. cv logo 6

Data: 2007

Identificador Persistente: http://hdl.handle.net/1822/13421

Origem: RepositóriUM - Universidade do Minho


Descrição
Blends of chitosan and biodegradable synthetic aliphatic polyesters (polycaprolactone, poly-(butylene succinate), poly[(butylene succinate)-co-adipate], poly[(butylene terephthalate)-co-adipate], and poly(lactic acid)) were injection-molded. These samples were immersed in isotonic solution at 37ºC for a period of 60 d. The water uptake and the degradation properties, as measured by the loss in tensile strength, were evaluated as a function of time. In this study, the rate and the equilibriumwater uptake were proportional to the amount of chitosan in the blend. The addition of HA to chitosan and polyester significantly reduced the equilibrium water uptake. The water uptake did not follow the classical Fickian phenomena and could be expressed by a two-stage sorption non-Fickian diffusion model. Contact angle measurement was used to quantify the changes in surface hydrophilicity as a function of chitosan and polyester composition. The glycerol contact angle decreased with increasing synthetic components in the blend. The blends and composites also showed increased degradation, as quantified by a loss in their mechanical properties, with increase in natural content. The degradation of properties was directly related to the water uptake of the blends; the higher the water uptake, the higher the degradation. Pure polyesters, while having low water uptake, nevertheless showed significant degradation by a precipitous drop in the strain at break. Among the polyesters, poly(lactic acid) displayed maximum degradation, while polycaprolactone displayed the least.
Tipo de Documento Artigo
Idioma Inglês
delicious logo  facebook logo  linkedin logo  twitter logo 
degois logo
mendeley logo

Documentos Relacionados



    Financiadores do RCAAP

Fundação para a Ciência e a Tecnologia Universidade do Minho   Governo Português Ministério da Educação e Ciência Programa Operacional da Sociedade do Conhecimento União Europeia