Detalhes do Documento

Synchronizing chromosome segregation by flux-dependent force equalization at ki...

Autor(es): Matos, Irina cv logo 1 ; Pereira, António J. cv logo 2 ; Lince-Faria, Mariana cv logo 3 ; Cameron, Lisa A. cv logo 4 ; Salmon, Edward D. cv logo 5 ; Maiato, Helder cv logo 6

Data: 2009

Identificador Persistente: http://hdl.handle.net/10216/26939

Origem: Repositório Aberto da Universidade do Porto


Descrição
The synchronous movement of chromosomes during anaphase ensures their correct inheritance in every cell division. This reflects the uniformity of spindle forces acting on chromosomes and their simultaneous entry into anaphase. Although anaphase onset is controlled by the spindle assembly checkpoint, it remains unknown how spindle forces are uniformly distributed among different chromosomes. In this paper, we show that tension uniformity at metaphase kinetochores and subsequent anaphase synchrony in Drosophila S2 cells are promoted by spindle microtubule flux. These results can be explained by a mechanical model of the spindle where microtubule poleward translocation events associated with flux reflect relaxation of the kinetochore-microtubule interface, which accounts for the redistribution and convergence of kinetochore tensions in a timescale comparable to typical metaphase duration. As predicted by the model, experimental acceleration of mitosis precludes tension equalization and anaphase synchrony. We propose that flux-dependent equalization of kinetochore tensions ensures a timely and uniform maturation of kinetochore-microtubule interfaces necessary for error-free and coordinated segregation of chromosomes in anaphase.
Tipo de Documento Artigo
Idioma Inglês
delicious logo  facebook logo  linkedin logo  twitter logo 
degois logo
mendeley logo

Documentos Relacionados



    Financiadores do RCAAP

Fundação para a Ciência e a Tecnologia Universidade do Minho   Governo Português Ministério da Educação e Ciência Programa Operacional da Sociedade do Conhecimento União Europeia