In order to perpetuate their genetic content, eukaryotic cells have developed a microtubule-based machine known as the mitotic spindle. Independently of the system studied, mitotic spindles share at least one common characteristic – the dynamic nature of microtubules. This property allows the constant plasticity needed to assemble a bipolar structure, make proper kinetochoremicrotubule attachments, segregate ch...
Although applicability of kymographs is limited to nearly one-dimensional (1D) processes, they have been instrumental in the analysis and interpretation of a wide range of dynamic biological processes. We focus here on some applications of kymography in the study of one among the range of ‘nearly-1D’ processes – mitosis. Using this biological context, we suggest generalized procedures in kymograph assembly that...
One of the most extraordinary events in the lifetime of a cell is the coordinated separation of sister chromatids during cell division. This is truly the essence of the entire mitotic process and the reason for the most profound morphological changes in cytoskeleton and nuclear organization that a cell may ever experience. It all occurs within a very short time window known as “anaphase”, as if the cell had spe...
Accurate chromosome segregation during mitosis requires precise coordination of various processes such as chromosome alignment, maturation of proper kinetochoremicrotubule (kMT) attachments, correction of erroneous attachments, and silencing of the spindle assembly checkpoint (SAC). How these fundamental aspects of mitosis are coordinately and temporally regulated is poorly understood. Here we show that the tem...
The synchronous movement of chromosomes during anaphase ensures their correct inheritance in every cell division. This reflects the uniformity of spindle forces acting on chromosomes and their simultaneous entry into anaphase. Although anaphase onset is controlled by the spindle assembly checkpoint, it remains unknown how spindle forces are uniformly distributed among different chromosomes. In this paper, we sh...
Establishment and maintenance of the mitotic spindle requires the balanced activity of microtubule-associated proteins and motors. In this study we have addressed how the microtubule plus-end tracking protein Mast/Orbit/CLASP and cytoplasmic dynein regulate this process in Drosophila melanogaster embryos and S2 cells. We show that Mast accumulates at kinetochores early in mitosis, which is followed by a polewar...
A putative spindle matrix has been hypothesized to mediate chromosome motion, but its existence and functionality remain controversial. In this report, we show that Megator (Mtor), the Drosophila melanogaster counterpart of the human nuclear pore complex protein translocated promoter region (Tpr), and the spindle assembly checkpoint (SAC) protein Mad2 form a conserved complex that localizes to a nuclear derived...
Cytoskeleton microtubules undergo a reversible metamorphosis as cells enter and exit mitosis to build a transient mitotic spindle required for chromosome segregation. Centrosomes play a dominant but dispensable role in microtubule (MT) organization throughout the animal cell cycle, supporting the existence of concurrent mechanisms that remain unclear. Here we investigated MT organization at the entry and exit f...
The chromodomain protein, Chromator, has been shown to have multiple functions that include regulation of chromatin structure as well as coordination of muscle remodeling during metamorphosis depending on the developmental context. In this study we show that mitotic neuroblasts from brain squash preparations from larvae heteroallelic for the two Chromator lossof- function alleles Chro71 and Chro612 have severe ...
Financiadores do RCAAP | |||||||
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |