Detalhes do Documento

Role of planktonic and sessile extracellular metabolic byproducts on Pseudomona...

Autor(es): Lopes, Susana Patrícia cv logo 1 ; Machado, Idalina cv logo 2 ; Pereira, M. O. cv logo 3

Data: 2011

Identificador Persistente: http://hdl.handle.net/1822/16816

Origem: RepositóriUM - Universidade do Minho

Assunto(s): Interspecies signaling; Synergistic and antagonistic interactions; Planktonic growth; Biofilm growth


Descrição
Bacterial species are found primarily as residents of complex surface-associated communities, known as biofilms. Although these structures prevail in nature, bacteria still exist in planktonic lifestyle and differ from those in morphology, physiology, and metabolism. This study aimed to investigate the influence of physiological states of Pseudomonas aeruginosa and Escherichia coli in cell-to-cell interactions. Filtered supernatants obtained under planktonic and biofilm cultures of each single species were supplemented with tryptic soy broth (TSB) and used as the growth media (conditioned media) to planktonic and sessile growth of both single- and two-species cultures. Planktonic bacterial growth was examined through OD640 measurement. One-day-old biofilms were evaluated in terms of biofilm biomass (CV), respiratory activity (XTT), and CFU number. Conditioned media obtained either in biofilm or in planktonic mode of life triggered a synergistic effect on planktonic growth, mainly for E. coli single cultures growing in P. aeruginosa supernatants. Biofilms grown in the presence of P. aeruginosa biofilms-derived metabolites presented less mass and activity. These events highlight that, when developed in biofilm, P. aeruginosa release signals or metabolites able to prejudice single and binary biofilm growth of others species and of their own species. However, products released by their planktonic counterparts did not impair biofilm growth or activity. E. coli, living as planktonic or sessile cultures, released signals and metabolites or removed un-beneficial compounds which promoted the growth and activity of all the species. Our findings revealed that inter and intraspecies behaviors depend on the involved bacteria and their adopted mode of life.
Tipo de Documento Artigo
Idioma Inglês
delicious logo  facebook logo  linkedin logo  twitter logo 
degois logo
mendeley logo

Documentos Relacionados



    Financiadores do RCAAP

Fundação para a Ciência e a Tecnologia Universidade do Minho   Governo Português Ministério da Educação e Ciência Programa Operacional da Sociedade do Conhecimento União Europeia