Detalhes do Documento

Inactivation of Caspase-1 in Rodent Brain: A Novel Anticonvulsive Strategy

Autor(es): Ravizza, Teresa cv logo 1 ; Lucas, Sian-Marie cv logo 2 ; Balosso, Silvia cv logo 3 ; Bernardino, Liliana cv logo 4 ; Ku, George cv logo 5 ; Noé, Francesco cv logo 6 ; Malva, João cv logo 7 ; Randle, John C. R. cv logo 8 ; Allan, Stuart cv logo 9 ; Vezzani, Annamaria cv logo 10

Data: 2006

Identificador Persistente: http://hdl.handle.net/10316/8093

Origem: Estudo Geral - Universidade de Coimbra


Descrição
Purpose: Cytokines and related inflammatory mediators are rapidly synthesized in the brain during seizures. We previously found that intracerebral administration of interleukin-1 (IL-1)-03B2 has proconvulsant effects, whereas its endogenous receptor antagonist (IL-1Ra) mediates potent anticonvulsant actions in various models of limbic seizures. In this study, we investigated whether seizures can be effectively inhibited by blocking the brain production of IL-103B2, by using selective inhibitors of interleukin-converting enzyme (ICE/caspase-1) or through caspase-1 gene deletion. Methods: Caspase-1 was selectively blocked by using pralnacasan or VX-765. IL-103B2 release was induced in mouse organotypic hippocampal slice cultures by proinflammatory stimuli [lipopolysaccaride (LPS) + adenosine triphosphate (ATP)] and measured with enzyme-linked immunosorbent assay (ELISA). IL-103B2 production during seizures was measured in the rat hippocampus by Western blot. Seizures were induced in freely moving mice and rats by intrahippocampal injection of kainic acid and recorded by EEG analysis. Results: Caspase-1 inhibition reduced the release of IL-103B2 in organotypic slices exposed to LPS+ATP. Administration of pralnacasan (intracerebroventricular, 50 03BCg) or VX-765 (intraperitoneal, 252013200 mg/kg) to rats blocked seizure-induced production of IL-103B2 in the hippocampus, and resulted in a twofold delay in seizure onset and 50% reduction in seizure duration. Mice with caspase-1 gene deletion showed a 70% reduction in seizures and an approximate fourfold delay in their onset. Conclusions: Inhibition of caspase-1 represents an effective and novel anticonvulsive strategy, which acts by selectively reducing the brain availability of IL-103B2. http://dx.doi.org/10.1111/j.1528-1167.2006.00590.x
Tipo de Documento Artigo
Idioma Inglês
delicious logo  facebook logo  linkedin logo  twitter logo 
degois logo
mendeley logo

Documentos Relacionados



    Financiadores do RCAAP

Fundação para a Ciência e a Tecnologia Universidade do Minho   Governo Português Ministério da Educação e Ciência Programa Operacional da Sociedade do Conhecimento União Europeia