Detalhes do Documento

Lamb meat quality assessment by support vector machines

Autor(es): Cortez, Paulo, 1971- cv logo 1 ; Portelinha, Manuel cv logo 2 ; Rodrigues, Sandra cv logo 3 ; Cadavez, Vasco cv logo 4 ; Teixeira, Alfredo cv logo 5

Data: 2006

Identificador Persistente: http://hdl.handle.net/1822/5923

Origem: RepositóriUM - Universidade do Minho

Assunto(s): Regression; Multilayer perceptrons; Support vector machines; Meat quality; Data mining; Feature selection


Descrição
The correct assessment of meat quality (i.e., to fulfill the consumer's needs) is crucial element within the meat industry. Although there are several factors that affect the perception of taste, tenderness is considered the most important characteristic. In this paper, a Feature Selection procedure, based on a Sensitivity Analysis, is combined with a Support Vector Machine, in order to predict lamb meat tenderness. This real-world problem is defined in terms of two difficult regression tasks, by modeling objective (e.g. Warner-Bratzler Shear force) and subjective (e.g. human taste panel) measurements. In both cases, the proposed solution is competitive when compared with other neural (e.g. Multilayer Perceptron) and Multiple Regression approaches.
Tipo de Documento Artigo
Idioma Inglês
delicious logo  facebook logo  linkedin logo  twitter logo 
degois logo
mendeley logo

Documentos Relacionados



    Financiadores do RCAAP

Fundação para a Ciência e a Tecnologia Universidade do Minho   Governo Português Ministério da Educação e Ciência Programa Operacional da Sociedade do Conhecimento União Europeia