Autor(es):
Balmayor, Elizabeth Rosado
; Tuzlakoglu, K.
; Azevedo, Helena S.
; Reis, R. L.
Data: 2009
Identificador Persistente: http://hdl.handle.net/1822/20314
Origem: RepositóriUM - Universidade do Minho
Descrição
One limitation associated with the delivery of bioactive agents concerns the short half-life of these molecules when administered intravenously,
which results in their loss from the desired site. Incorporation of bioactive agents into depot vehicles provides a means to
increase their persistence at the disease site. Major issues are involved in the development of a proper carrier system able to deliver
the correct drug, at the desired dose, place and time. In this work, starch-poly-e-caprolactone (SPCL) microparticles were developed
for use in drug delivery and tissue engineering (TE) applications. SPCL microparticles were prepared by using an emulsion solvent
extraction/evaporation technique, which was demonstrated to be a successful procedure to obtain particles with a spherical shape (particle
size between 5 and 900 lm) and exhibiting different surface morphologies. Their chemical structure was confirmed by Fourier transform
infrared spectroscopy. To evaluate the potential of the developed microparticles as a drug delivery system, dexamethasone (DEX)
was used as model drug. DEX, a well-known component of osteogenic differentiation media, was entrapped into SPCL microparticles at
different percentages up to 93%. The encapsulation efficiency was found to be dependent on the polymer concentration and drug-to-polymer
ratio. The initial DEX release seems to be governed mainly by diffusion, and it is expected that the remaining DEX will be released
when the polymeric matrix starts to degrade. In this work it was demonstrated that SPCL microparticles containing DEX can be successfully
prepared and that these microparticular systems seem to be quite promising for controlled release applications, namely as carriers
of important differentiation agents in TE.