Hydrophobized polysaccharides have emerged as a promising strategy in the biomedical field due to the versatility to design functional structures through the spontaneous self-assembly in cell-friendly conditions. Based on this concept, xanthan, a bacterial extracellular polysaccharide with potential as encapsulating matrix, was conjugated with hydrophobic palmitoyl groups to obtain an amphiphilic system able to...
This chapter is intended to provide a summary of the current materials used in cell encapsulation technology as well as methods for evaluating the performance of cells encapsulated in a polymeric matrix. In particular, it describes the experimental procedure to prepare a hydrogel matrix based on natural polymers for encapsulating and culturing human articular chondrocytes with the interest in cartilage regenera...
In nature, organisms control crystal nucleation and growth using organic interfaces as templates. Scientists, in the last decades, have tried to learn from nature how to design biomimetic biomaterials inspired by the hierarchical complex structure of bone and other natural mineralised tissues or to control the biomineralization process onto biomaterials substrates to promote the osteoconductive properties of im...
Bone morphogenetic proteins (BMPs) are cytokines with strong ability to promote new bone formation. Herein, we report the use of silk fibroin microparticles as carriers for the delivery of BMP-2, BMP-9 or BMP-14. BMP-containing fibroin microparticles were prepared by a mild methodology using dropwise addition of ethanol, exhibiting mean diameters of 2.7 ± 0.3 μm. Encapsulation efficiencies varied between 67.9 ±...
A convenient and straightforward process for preparation of highly porous and interconnected !ber mesh scaffolds with 50 wt.% content of starch is described. The proposed methodology avoids some of the previous encountered problems associated with the processing of starch-based materials such as thermal degradation, starch entrapment in the material bulk and inability to control/minimise the thickness of the !b...
This study describes an innovative self-regulated degrading material with gradual in situ pore formation ability for bone tissue engineering applications. This approach is based on the incorporation of the lysozyme enzyme into calcium phosphate (CaP) coatings, prepared on the surface of chitosan scaffolds by means of a biomimetic coating technique with the aim of controlling their degradation rate and subsequen...
This paper reports the effect of a-amylase encapsulation on the degradation rate of a starch-based biomaterial. The encapsulation method consisted in mixing a thermostable a-amylase with a blend of corn starch and polycaprolactone (SPCL), which were processed by compression moulding to produce circular disks. The presence of water was avoided to keep the water activity low and consequently to minimize the enzym...
BMP-2 is currently administered clinically using collagen matrices often requiring large amounts of BMP-2 due to burst release over a short period of time. We developed and tested a novel injectable drug delivery system consisting of starch-poly-e-caprolactone microparticles for inducing osteogenesis and requiring smaller amounts of BMP-2. We evaluated BMP-2 encapsulation efficiency and the in vitro release pro...
Financiadores do RCAAP | |||||||
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |