Document details

Effect of chitosan membrane surface modification via plasma induced polymerizat...

Author(s): López Pérez, Paula M. cv logo 1 ; Marques, A. P. cv logo 2 ; Silva, Ricardo M. P. da cv logo 3 ; Pashkuleva, I. cv logo 4 ; Reis, R. L. cv logo 5

Date: 2007

Persistent ID: http://hdl.handle.net/1822/20203

Origin: RepositóriUM - Universidade do Minho


Description
The surface of solvent cast chitosan membranes was modified using a two-step procedure. Oxygen plasma treatment was used at the first activation step followed by vinyl monomer graft polymerization. Two monomers were used in order to compare the influence of different functional groups on cell adhesion and proliferation; acrylic acid (AA) was used to introduce carboxyl groups and vinyl sulfonic acid (VSA) was used as a source of sulfonic groups. The surface chemistry/energy changes were characterized by means of X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR-ATR), and contact angle measurements. Additionally, alterations in the surface morphology were investigated by scanning electron microscopy (SEM). XPS analyses confirmed the polymer grafting on the surface; an S2s peak appears in the VSA survey spectrum and an O–CLO peak emerges in the C1s high resolution spectrum after AA grafting. Moreover, contact angle measurements showed an increment in the values of the surface energy polar and Lewis base components for all treated samples, confirming the introduction of additional polar groups by the modification processes. FTIR-ATR spectra showed no significant difference between treated and original materials. These results confirmed that only the very top (a few angstroms) surface layer, but not the bulk of the material, was modified. The effect of modification on the adhesion and proliferation of osteoblast-like cells was studied on a preliminary basis. Direct contact tests were performed using a human osteosarcoma cell line (SaOs-2). Cell morphology (optical microscopy and SEM) and cell viability (MTS test) were evaluated for untreated and surface modified membranes. The results revealed that both plasma treatment, and the presence of sulfonic groups on the surface of chitosan membranes, improve SaOs-2 adhesion and proliferation when compared to untreated or AA-grafted membranes. This effect was strongly related to the polar and Lewis basic components of the total surface energy.
Document Type Article
Language English
delicious logo  facebook logo  linkedin logo  twitter logo 
degois logo
mendeley logo

Related documents



    Financiadores do RCAAP

Fundação para a Ciência e a Tecnologia Universidade do Minho   Governo Português Ministério da Educação e Ciência Programa Operacional da Sociedade do Conhecimento EU