Detalhes do Documento

Feature selection for bankruptcy prediction : a multi-objective optimization ap...

Autor(es): Mendes, F. cv logo 1 ; Duarte, J. cv logo 2 ; Vieira, Armando cv logo 3 ; Gaspar-Cunha, A. cv logo 4 ; Ribeiro, Bernardete cv logo 5 ; Ribeiro, André M. S. cv logo 6 ; Neves, João Carvalho cv logo 7

Data: 2010

Identificador Persistente: http://hdl.handle.net/1822/19288

Origem: RepositóriUM - Universidade do Minho

Assunto(s): Feature selection; Bankruptcy prediction; Multi-objective optimization; Evolutionary algorithms; Support vector machines; Logistic regression


Descrição
In this work a Multi-Objective Evolutionary Algorithm (MOEA) was applied for feature selection in the problem of bankruptcy prediction. The aim is to maximize the accuracy of the classifier while keeping the number of features low. A two-objective problem - minimization of the number of features and accuracy maximization – is fully analyzed using two classifiers: Support Vector Machines and Logistic Function. A database containing financial statements of 1200 medium sized private French companies was used. It was shown that MOEA is a very efficient feature selection approach. Furthermore, it can provide very useful information for the decision maker in characterizing the financial health of a company.
Tipo de Documento Documento de conferência
Idioma Inglês
delicious logo  facebook logo  linkedin logo  twitter logo 
degois logo
mendeley logo

Documentos Relacionados



    Financiadores do RCAAP

Fundação para a Ciência e a Tecnologia Universidade do Minho   Governo Português Ministério da Educação e Ciência Programa Operacional da Sociedade do Conhecimento União Europeia