Available online 31 October 2013 ; Computational optimization methods are most often used to find a single or multiple optimal or near-optimal solutions to the underlying optimization problem describing the problem at hand. In this paper, we elevate the use of optimization to a higher level in arriving at useful problem knowledge associated with the optimal or near-optimal solutions to a problem. In the propos...
Constrained optimization is one of the popular research areas since constraints are usually present in most real world optimization problems. The purpose of this work is to develop a gradient free constrained global optimization methodology to solve this type of problems. In the methodology proposed, the single objective constrained optimization problem is solved using a Multi-Objective Evolutionary Algorithm (...
The cooling process in polymer injection moulding is of great importance as it has a direct impact on both productivity and product quality. In this paper a Multi-objective Optimization Genetic Algorithm, denoted as Reduced Pareto Set Genetic Algorithm with Elitism (RPSGAe), was applied to optimize both the position and the layout of the cooling channels in the injection moulding process. The optimization model...
The Twin-Screw Configuration Problem (TSCP) consists in identifying the best location of a set of available screw elements along a screw shaft. Due to its combinatorial nature, it can be seen as a sequencing problem. In addition, different conflicting objectives may have to be considered when defining a screw configuration and, thus, it is usually tackled as a multi-objective optimization problem. In this resea...
The objective this work was to obtain bioplastics from mixtures of wheat gluten and glycerol by two different processes and evaluate their respective rheological properties. The mixtures and their respective bioplastics were obtained through direct batch mixing under approximately adiabatic and isothermal conditions. The bioplastics showed high values for the storage (G’) and loss (G’’) moduli, suggesting a str...
The potential of OpenFOAM to design extrusion dies, incorporating the Fluid Structure Interaction (FSI)
Flow of granular matter is presently a subject of extensive research, due to the characteristics of this type of systems (e.g., dilatancy, segregation, arching, clustering) and relevance to various application areas, such as civil construction, agriculture, food processing, geophysics, pharmacology [1, 2]. The plasticating process in single screw polymer extrusion is one of the areas where this research can hel...
Scaling-up of co-rotating twin screw extruders is studied as a multi-objective optimization problem where the aim is to define the geometry/operating conditions of the target extruder that minimize the differences between the values of the performance criteria that depict the reference and target extruders. Three computational experiments are discussed. These preliminary results seem encouraging.
The use of computational methodologies for the optimization of aesthetic parameters is not frequent mainly due to the fact that these parameters are not quantifiable and are subjective. In this work an interactive methodology based on the use of multi-objective optimization algorithms is proposed. This strategy associates the results of different optimization runs considering the existent quantifiable objective...
Plasticating single screw extrusion involves the progressive compaction and heating of loose solid pellets that eventually melt, form a relatively homogenous stream and are subsequently pumped through a shaping tool. Traditional analyses of the solids conveying stage assume the sliding of an elastic solid plug due to differential wall friction coefficients. However, not only the corresponding predictions may fa...
Financiadores do RCAAP | |||||||
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |