Detalhes do Documento

Multi-objective evolutionary algorithms for feature selection : application in ...

Autor(es): Gaspar-Cunha, A. cv logo 1 ; Mendes, F. cv logo 2 ; Duarte, J. cv logo 3 ; Vieira, Armando cv logo 4 ; Ribeiro, Bernardete cv logo 5 ; Ribeiro, André M. S. cv logo 6 ; Neves, João Carvalho cv logo 7

Data: 2010

Identificador Persistente: http://hdl.handle.net/1822/18838

Origem: RepositóriUM - Universidade do Minho

Assunto(s): Multi-Objective; Evolutionary algorithms; Feature selection; Bankruptcy prediction


Descrição
A Multi-Objective Evolutionary Algorithm (MOEA) was adapted in order to deal with problems of feature selection in datamining. The aim is to maximize the accuracy of the classifier and/or to minimize the errors produced while minimizing the number of features necessary. A Support Vector Machines (SVM) classifier was adopted. Simultaneously, the parameters required by the classifier were also optimized. The validity of the methodology proposed was tested in the problem of bankruptcy prediction using a database containing financial statements of 1200 medium sized private French companies. The results produced shown that MOEA is an efficient feature selection approach and the best results were obtained when the accuracy, the errors and the classifiers parameters are optimized.
Tipo de Documento Documento de conferência
Idioma Inglês
delicious logo  facebook logo  linkedin logo  twitter logo 
degois logo
mendeley logo

Documentos Relacionados



    Financiadores do RCAAP

Fundação para a Ciência e a Tecnologia Universidade do Minho   Governo Português Ministério da Educação e Ciência Programa Operacional da Sociedade do Conhecimento União Europeia