Detalhes do Documento

Cardosins improve neuronal regeneration after cell disruption: a comparative ex...

Autor(es): Duarte, Ana cv logo 1 ; Duarte, Emília cv logo 2 ; Correia, António cv logo 3 ; Pires, Euclides cv logo 4 ; Barros, Marlene cv logo 5

Data: 2008

Identificador Persistente: http://hdl.handle.net/10316/7869

Origem: Estudo Geral - Universidade de Coimbra


Descrição
Abstract The establishment of primary cell cultures is invaluable for studying cell and molecular biological questions. Although primary cell cultures more closely resemble and function like in the native environment, during the culture establishment the cells undergo several changes including the damage sustained during their removal from original tissue. The resultant cells have to rebalance the expression of their processing molecules to ascertain matrix signalling that ensure cell adaptation and consequent proliferation. Hence, we used cardosin, a novel plant enzyme for tissue disaggregation, for isolating and culturing neuronal cells from embryonic rats. The present investigation reports the molecular events, mainly related with matrix metalloproteinases (MMPs)/tissue inhibitor of metalloproteinase (TIMPs) expression, which could substantiate the superior neurite outgrowth and dendritic extension previously described. It was observed that 24 h after primary culture establishment, MMP-2 and MMP-9 messenger RNA (mRNA) are significantly upregulated, while the expression of TIMP-1 and TIMP-2 is unaltered. Regarding the role of laminin in neuronal pathfinding, it was found that the use of anti-laminin antibody and arginine–glycine–aspartate (RGD) peptide exerted inhibitory effects on neurite outgrowth after mechanical lesion where the expression of MMP-9 and TIMP-1 is upregulated under non-permissive conditions in response to mechanical injury. http://dx.doi.org/10.1007/s10565-008-9058-x
Tipo de Documento Artigo
Idioma Inglês
delicious logo  facebook logo  linkedin logo  twitter logo 
degois logo
mendeley logo

Documentos Relacionados



    Financiadores do RCAAP

Fundação para a Ciência e a Tecnologia Universidade do Minho   Governo Português Ministério da Educação e Ciência Programa Operacional da Sociedade do Conhecimento União Europeia