Author(s): 
		  					
		  					Castro-Caldas, M.  ; Mendes, A. F.
 ; Mendes, A. F.  ; Carvalho, A. P.
 ; Carvalho, A. P.  ; Duarte, C. B.
 ; Duarte, C. B.  ; Lopes, M. C.
 ; Lopes, M. C.  
 
		  					
		  					
							
		  					Date: 2003 
		  					
		  					
							Persistent ID: http://hdl.handle.net/10316/12763
							
		  					Origin: Estudo Geral - Universidade de Coimbra
							
		  					Subject(s): Nuclear factor-kB; Dexamethasone; IkB-a; Interleukin-1b; Lymphoblastic cells
							
						 
	  					
	  					
	  					
	  						Description
	  						AIMS: Glucocorticoids (GCs) exert some of their anti-inflammatory actions by preventing the activation of the transcription factor nuclear factor (NF)-kappaB. The GC-dependent inhibition of NF-kappaB may occur at different levels, but the mechanisms involved are still incompletely understood. In this work, we investigated whether the synthetic GC, dexamethasone (Dex), modulates the activity of NF-kappaB in the lymphoblastic CCRF-CEM cell line. We also evaluated the ability of Dex to prevent the activation of NF-kappaB in response to the potent proinflammatory cytokine, interleukin (IL)-1beta. RESULTS: Exposure of the cells to Dex (1 microM) induced the rapid degradation of IkappaB-alpha, leading to the transient translocation of the NF-kappaB family members p65 and p50 from the cytoplasm to the nucleus, as evaluated by western blot. Electrophoretic mobility shift assays revealed that, in the nucleus, these NF-kappaB proteins formed protein-DNA complexes, indicating a transient activation of NF-kappaB. Additionally, Dex also induced de novo synthesis of IkappaB-alpha, following its degradation. Finally, when the cells were exposed to Dex (1 microM) prior to stimulation with IL-1beta (20 ng/ml), Dex was efficient in preventing IL-1beta-induced NF-kappaB activation. The GC antagonist, RU 486 (10 microM), did not prevent any of the effects of Dex reported here. CONCLUSION: Our results indicate that, in CCRF-CEM cells, Dex prevents NF-kappaB activation, induced by IL-1beta, by a mechanism that involves the upregulation of IkappaB-alpha synthesis, and that depends on the early and transient activation of NF-kappaB