Document details

Disparity energy model using a trained neuronal population

Author(s): Martins, Jaime A. cv logo 1 ; Rodrigues, J. M. F. cv logo 2 ; du Buf, J. M. H. cv logo 3

Date: 2011

Persistent ID: http://hdl.handle.net/10400.1/2078

Origin: Sapientia - Universidade do Algarve

Subject(s): Visão humana; Córtex; Disparity; Biological model; Learning; Population coding


Description
Depth information using the biological Disparity Energy Model can be obtained by using a population of complex cells. This model explicitly involves cell parameters like their spatial frequency, orientation, binocular phase and position difference. However, this is a mathematical model. Our brain does not have access to such parameters, it can only exploit responses. Therefore, we use a new model for encoding disparity information implicitly by employing a trained binocular neuronal population. This model allows to decode disparity information in a way similar to how our visual system could have developed this ability, during evolution, in order to accurately estimate disparity of entire scenes
Document Type Conference Object
Language English
delicious logo  facebook logo  linkedin logo  twitter logo 
degois logo
mendeley logo

Related documents



    Financiadores do RCAAP

Fundação para a Ciência e a Tecnologia Universidade do Minho   Governo Português Ministério da Educação e Ciência Programa Operacional da Sociedade do Conhecimento EU