Building a general-purpose, real-time active vision system completely based on biological models is a great challenge. We apply a number of biologically plausible algorithms which address different aspects of vision, such as edge and keypoint detection, feature extraction,optical flow and disparity, shape detection, object recognition and scene modelling into a complete system. We present some of the experiment...
Most biological approaches to disparity extraction rely on the disparity energy model (DEM). In this paper we present an alternative approach which can complement the DEM model. This approach is based on the multiscale coding of lines and edges, because surface structures are composed of lines and edges and contours of objects often cause edges against their background. We show that the line/edge approach can b...
Depth information using the biological Disparity Energy Model can be obtained by using a population of complex cells. This model explicitly involves cell parameters like their spatial frequency, orientation, binocular phase and position difference. However, this is a mathematical model. Our brain does not have access to such parameters, it can only exploit responses. Therefore, we use a new model for encoding d...
Financiadores do RCAAP | |||||||
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |