Detalhes do Documento

Nonlinear modeling of the cyclic response of RC columns

Autor(es): Melo, J. cv logo 1 ; Varum, H. cv logo 2 ; Rossetto, T. cv logo 3 ; Fernandes, C. cv logo 4 ; Costa, A. cv logo 5

Data: 2012

Identificador Persistente: http://hdl.handle.net/10773/9960

Origem: RIA - Repositório Institucional da Universidade de Aveiro

Assunto(s): Non-linear modeling; RC columns; Bond-slip mechanism


Descrição
Cyclic load reversals (like those induced by earthquakes) result in accelerated bond degradation, leading to significant bar slippage. The bond-slip mechanism is reported to be one of the most common causes of damage and even collapse of existing RC structures subjected to earthquake loading. RC structures with plain reinforcing bars, designed and built prior to the enforcement of the modern seismic-oriented design philosophies, are particularly sensitive to bond degradation. However, perfect bond conditions are typically assumed in the numerical analysis of RC structures. This paper describes the numerical modeling of the cyclic response of two RC columns, one built with deformed bars and the other with plain bars and structural detailing similar to that typically adopted in pre-1970s structures. For each column, different modeling strategies to simulate the column response were tested. Models were built using the OpenSees and the SeismoStruct platforms, and calibrated with the available tests results. Within each platform, different types of nonlinear elements were used to represent the columns. Bond-slip effects were included in the OpenSees models resorting to a simple modeling strategy. The models and the parameters adopted are presented and discussed. Comparison is established between the most relevant experimental results and the corresponding results provided by the numerical models. Conclusions are drawn about the capacity of the tested models to simulate the columns response and about the influence of considering or not considering the effects of bars slippage.
Tipo de Documento Documento de conferência
Idioma Inglês
delicious logo  facebook logo  linkedin logo  twitter logo 
degois logo
mendeley logo

Documentos Relacionados



    Financiadores do RCAAP

Fundação para a Ciência e a Tecnologia Universidade do Minho   Governo Português Ministério da Educação e Ciência Programa Operacional da Sociedade do Conhecimento União Europeia