Detalhes do Documento

A stochastic approximation algorithm with multiplicative step size modification

Autor(es): Plakhov, Alexander cv logo 1 ; Cruz, João Pedro Antunes Ferreira da cv logo 2

Data: 2009

Identificador Persistente: http://hdl.handle.net/10773/6176

Origem: RIA - Repositório Institucional da Universidade de Aveiro

Assunto(s): Stochastic approximation; Accelerated convergence; Step size adaptation


Descrição
An algorithm of searching a zero of an unknown function $\vphi : \, \R \to \R$ is considered: $\, x_{t} = x_{t-1} - \gamma_{t-1} y_t$,\, $t=1,\ 2,\ldots$, where $y_t = \varphi(x_{t-1}) + \xi_t$ is the value of $\vphi$ measured at $x_{t-1}$ and $\xi_t$ is the measurement error. The step sizes $\gam_t > 0$ are modified in the course of the algorithm according to the rule: $\, \gamma_t = \min\{u\, \gamma_{t-1},\, \mstep\}$ if $y_{t-1} y_t > 0$, and $\gamma_t = d\, \gamma_{t-1}$, otherwise, where $0 < d < 1 < u$,\, $\mstep > 0$. That is, at each iteration $\gam_t$ is multiplied either by $u$ or by $d$, provided that the resulting value does not exceed the predetermined value $\mstep$. The function $\vphi$ may have one or several zeros; the random values $\xi_t$ are independent and identically distributed, with zero mean and finite variance. Under some additional assumptions on $\vphi$, $\xi_t$, and $\mstep$, the conditions on $u$ and $d$ guaranteeing a.s. convergence of the sequence $\{ x_t \}$, as well as a.s. divergence, are determined. In particular, if $\P (\xi_1 > 0) = \P (\xi_1 < 0) = 1/2$ and $\P (\xi_1 = x) = 0$ for any $x \in \R$, one has convergence for $ud < 1$ and divergence for $ud > 1$. Due to the multiplicative updating rule for $\gam_t$, the sequence $\{ x_t \}$ converges rapidly: like a geometric progression (if convergence takes place), but the limit value may not coincide with, but instead, approximates one of the zeros of $\vphi$. By adjusting the parameters $u$ and $d$, one can reach arbitrarily high precision of the approximation; higher precision is obtained at the expense of lower convergence rate.
Tipo de Documento Artigo
Idioma Inglês
delicious logo  facebook logo  linkedin logo  twitter logo 
degois logo
mendeley logo

Documentos Relacionados



    Financiadores do RCAAP

Fundação para a Ciência e a Tecnologia Universidade do Minho   Governo Português Ministério da Educação e Ciência Programa Operacional da Sociedade do Conhecimento União Europeia