Document details

Navigation in dynamic environments taking advantage of moving agents

Author(s): Stein, Procópio Silveira cv logo 1

Date: 2013

Persistent ID: http://hdl.handle.net/10773/12138

Origin: RIA - Repositório Institucional da Universidade de Aveiro

Subject(s): Engenharia mecânica; Navegação autónoma; Robots autónomos; Peões - Detecção remota


Description
Esta tese propõe uma forma diferente de navegação de robôs em ambientes dinâmicos, onde o robô tira partido do movimento de pedestres, com o objetivo de melhorar as suas capacidades de navegação. A ideia principal é que, ao invés de tratar as pessoas como obstáculos dinâmicos que devem ser evitados, elas devem ser tratadas como agentes especiais com conhecimento avançado em navegação em ambientes dinâmicos. Para se beneficiar do movimento de pedestres, este trabalho propõe que um robô os selecione e siga, de modo que possa mover-se por caminhos ótimos, desviar-se de obstáculos não detetados, melhorar a navegação em ambientes densamente populados e aumentar a sua aceitação por outros humanos. Para atingir estes objetivos, novos métodos são desenvolvidos na área da seleção de líderes, onde duas técnicas são exploradas. A primeira usa métodos de previsão de movimento, enquanto a segunda usa técnicas de aprendizagem por máquina, para avaliar a qualidade de candidatos a líder, onde o treino é feito com exemplos reais. Os métodos de seleção de líder são integrados com algoritmos de planeamento de movimento e experiências são realizadas para validar as técnicas propostas. This thesis proposes a di erent form of robotic navigation in dynamic environments, where the robot takes advantage of the motion of pedestrians, in order to improve its own navigation capabilities. The main idea is that, instead of treating persons as dynamic obstacles that should be avoided, they should be treated as special agents with an expert knowledge of navigating in dynamic scenarios. To bene t from the motion of pedestrians, this work proposes that the robot selects and follows them, so it can move along optimal paths, deviate from undetected obstacles, improve navigation in densely populated areas and increase its acceptance by other humans. To accomplish this proposition, novel approaches are developed in the area of leader selection, where two methods are explored. The rst uses motion prediction approaches while the second uses a machine learning method, to evaluate the leader quality of subjects, which is trained with real examples. Finally, the leader selection methods are integrated with motion planning algorithms and experiments are conducted in order to validate the proposed techniques. Doutoramento em Engenharia Mecânica
Document Type Doctoral Thesis
Language English
Advisor(s) Santos, Vítor Manuel Ferreira dos; Spalanzani, Anne
delicious logo  facebook logo  linkedin logo  twitter logo 
degois logo
mendeley logo


    Financiadores do RCAAP

Fundação para a Ciência e a Tecnologia Universidade do Minho   Governo Português Ministério da Educação e Ciência Programa Operacional da Sociedade do Conhecimento EU