Detalhes do Documento

A new physarum learner for network structure learning from biomedical data

Autor(es): Schön, T. cv logo 1 ; Stetter, M. cv logo 2 ; Tomé, A. M. cv logo 3 ; Lang, E. W. cv logo 4

Data: 2013

Identificador Persistente: http://hdl.handle.net/10773/10912

Origem: RIA - Repositório Institucional da Universidade de Aveiro

Assunto(s): Bayesian Network; Structure Learning; Physarum Solver; LAGD Hill Climber


Descrição
A novel structure learning algorithm for Bayesian Networks based on a Physarum Learner is presented. The length of the connections within an initially fully connected Physarum-Maze is taken as the inverse Pearson correlation coefficient between the connected nodes. The Physarum Learner then estimates the shortest indirect paths between each pair of nodes. In each iteration, a score of the surviving edges is incremented. Finally, the highest scored connections are combined to form a Bayesian Network. The novel Physarum Learner method is evaluated with different configurations and compared to the LAGD Hill Climber showing comparable performance with respect to quality of training results and increased time efficiency for large data sets.
Tipo de Documento Documento de conferência
Idioma Inglês
delicious logo  facebook logo  linkedin logo  twitter logo 
degois logo
mendeley logo

Documentos Relacionados



    Financiadores do RCAAP

Fundação para a Ciência e a Tecnologia Universidade do Minho   Governo Português Ministério da Educação e Ciência Programa Operacional da Sociedade do Conhecimento União Europeia