Encontrados 2 documentos, a visualizar página 1 de 1

Ordenado por Data

A new physarum learner for network structure learning from biomedical data

Schön, T.; Stetter, M.; Tomé, A. M.; Lang, E. W.

A novel structure learning algorithm for Bayesian Networks based on a Physarum Learner is presented. The length of the connections within an initially fully connected Physarum-Maze is taken as the inverse Pearson correlation coefficient between the connected nodes. The Physarum Learner then estimates the shortest indirect paths between each pair of nodes. In each iteration, a score of the surviving edges is inc...


Knowledge-based gene expression classification via matrix factorization

Schachtner, R.; Lutter, D.; Knollmüller, P.; Tomé, A. M.; Theis, F. J.; Schmitz, G.; Stetter, M.; Gómez Vilda, P.; Lang, E. W.

Motivation: Modern machine learning methods based on matrix decomposition techniques, like independent component analysis (ICA) or non-negative matrix factorization (NMF), provide new and efficient analysis tools which are currently explored to analyze gene expression profiles. These exploratory feature extraction techniques yield expression modes (ICA) or metagenes (NMF). These extracted features are considere...


2 Resultados

Texto Pesquisado

Refinar resultados

Autor











Data



Tipo de Documento



Recurso


Assunto









    Financiadores do RCAAP

Fundação para a Ciência e a Tecnologia Universidade do Minho   Governo Português Ministério da Educação e Ciência Programa Operacional da Sociedade do Conhecimento União Europeia