Document details

Discrete Direct Methods in the Fractional Calculus of Variations

Author(s): Pooseh, Shakoor cv logo 1 ; Almeida, Ricardo cv logo 2 ; Torres, Delfim F. M. cv logo 3

Date: 2012

Persistent ID: http://hdl.handle.net/10773/10514

Origin: RIA - Repositório Institucional da Universidade de Aveiro

Subject(s): Fractional calculus; Fractional calculus of variations; Direct methods


Description
Finite differences, as a subclass of direct methods in the calculus of variations, consist in discretizing the objective functional using appropriate approximations for derivatives that appear in the problem. This article generalizes the same idea for fractional variational problems. We consider a minimization problem with a Lagrangian that depends on the left Riemann– Liouville fractional derivative. Using the Gr¨unwald–Letnikov definition, we approximate the objective functional in an equispaced grid as a multi-variable function of the values of the unknown function on mesh points. The problem is then transformed to an ordinary static optimization problem. The solution to the latter problem gives an approximation to the original fractional problem on mesh points.
Document Type Conference Object
Language English
delicious logo  facebook logo  linkedin logo  twitter logo 
degois logo
mendeley logo

Related documents



    Financiadores do RCAAP

Fundação para a Ciência e a Tecnologia Universidade do Minho   Governo Português Ministério da Educação e Ciência Programa Operacional da Sociedade do Conhecimento EU