Detalhes do Documento

Raw data pre-processing in the protozoa and metazoa identification by image ana...

Autor(es): Ginoris, Y. P. cv logo 1 ; Amaral, A. L. cv logo 2 ; Nicolau, Ana cv logo 3 ; Coelho, M. A. Z. cv logo 4 ; Ferreira, E. C. cv logo 5

Data: 2007

Identificador Persistente: http://hdl.handle.net/1822/6947

Origem: RepositóriUM - Universidade do Minho

Assunto(s): Protozoa; Metazoa; Image analysis; Pattern recognition


Descrição
Different protozoa and metazoa populations develop in the activated sludge wastewater treatment processes and are highly dependent on the operating conditions. In the current work the protozoa and metazoa groups and species most frequent in wastewater treatment plants were studied, mainly the flagellate, sarcodine, and ciliate protozoa as well as the rotifer, gastrotrichia, and oligotrichia metazoa. The work is centered on the survey of the wastewater treatment plant conditions by protozoa and metazoa population using image analysis, discriminant analysis (DA), and neural networks (NNs) techniques, and its main objective was set on the evaluation of the importance of raw data pre-processing techniques in the final results. The main pre-processing techniques herein studied were the raw parameters reduction set by a joint cross-correlation and decision trees (DTs) procedure and two data normalization techniques: logarithmic normalization and standard deviation normalization. Regarding the parameters reduction methodology, the use of a joint DTs and correlation analysis (CA) procedure resulted in 28 and 30% reductions in terms of the initial parameters set for the stalked and non-stalked microorganisms, respectively. Consequently, the use of the reduced parameters set has proven to be a suitable starting point for both the DA and NNs methodologies, although for the DA an initial logarithmic normalization step is advisable. For the NNs analysis a standard deviation normalization procedure could be considered for the non-stalked microorganisms regarding the operating parameters assessment.
Tipo de Documento Artigo
Idioma Inglês
delicious logo  facebook logo  linkedin logo  twitter logo 
degois logo
mendeley logo

Documentos Relacionados



    Financiadores do RCAAP

Fundação para a Ciência e a Tecnologia Universidade do Minho   Governo Português Ministério da Educação e Ciência Programa Operacional da Sociedade do Conhecimento União Europeia