Detalhes do Documento

Surface modification tailors the characteristics of biomimetic coatings nucleat...

Autor(es): Oliveira, A. L. cv logo 1 ; Elvira, C. cv logo 2 ; Vásquez, Blanca cv logo 3 ; San Román, J. cv logo 4 ; Reis, R. L. cv logo 5

Data: 1999

Identificador Persistente: http://hdl.handle.net/1822/3896

Origem: RepositóriUM - Universidade do Minho


Descrição
This work describes the influence of surface pretreatments over the nucleation and growth of an apatite layer, formed by a biomimetic process, on which a bioactive glass is used as a precursor of the calcium-phosphate (Ca-P) formation on the materials surface. SEVA-C, a corn starch-based biodegradable blend, was used as substrate. The surfaces were pretreated during various periods by: (i) physical methods, namely ultraviolet radiation (u.v.), and over exposure to ethylene oxide sterilization (EtO); and (ii) chemical methods, namely potassium hydroxide (KOH) and acetic anhydride (CH3CO)2 etchings. The surface modifications, performed before the production of the biomimetic coatings, resulted in a faster formation of Ca-P nuclei during the first stages of SBF immersion, particularly in the case of the KOH etching. In this case, it was possible to observe a decrease in the average surface roughness, as measured by laser profilometry, and an increase of the hydrophilicity of the material, which was evident from a clear increment in the water-uptake ability and quantified by contact angle measurements. With this treatment it was possible not only to reduce the induction period for the formation of a well defined and dense apatite-like layer, as observed by scanning electron microscopy (SEM), but also to improve the adhesion of the Ca-P layer to the substrate, as confirmed by the adhesion strength tests. For all the studied pre-treatments, the composition of the films, analyzed by energy dispersive spectroscopy (EDS) and identified by thin-film X-ray diffraction (TF-XRD), seems to be very similar to that of human bone apatites.
Tipo de Documento Artigo
Idioma Inglês
delicious logo  facebook logo  linkedin logo  twitter logo 
degois logo
mendeley logo

Documentos Relacionados



    Financiadores do RCAAP

Fundação para a Ciência e a Tecnologia Universidade do Minho   Governo Português Ministério da Educação e Ciência Programa Operacional da Sociedade do Conhecimento União Europeia