Descrição
Poster apresentado no "Smart and functional coatings conference", Torino, Italy, 2013 Electrospinning allows the production of polymer fibres with diameters in the sub-micron size range, through the application of an external electric field, keeping intact the bulk properties of the polymers. Electrospun membranes possess some unique structural features, such as a high surface to volume ratio and very good mechanical performance, properties that are determinant to their use in several applications such as air and liquid filtration, tissue engineering, optical and chemical sensors [1]. In this work, alkali and acid biopolysaccharides blended with polyvinyl alcohol (PVA) were electrospinned into a polyvinylidene difluoride (PVDF) basal microfiltration membrane, with the goal of developing a mid-layer nanofibrous porous support for exploitable thin-film composite (TFC) membranes for water filtration. The alkali and acid biopolysaccharides chosen were, respectively, chitosan (CS), a cationic polyelectrolyte (in this case with deacetylation degree around 85), and cyanobacterial extracellular polymeric substances (EPS), an acidic polysaccharide isolated from Cyanothece sp.CCY 0110 [2]. The electrospun blended nanofibrous membranes were fully characterized in order to investigate their morphology, diameter, structure, mechanical and thermal properties. The results showed that these membranes have great potential for filtration purposes [3].