Detalhes do Documento

Degradation of metalaxyl and folpet by filamentous fungi isolated from Portugue...

Autor(es): Martins, M. Rosário cv logo 1 ; Pereira, Pablo cv logo 2 ; Lima, Nelson cv logo 3 ; Morais, Júlio Cruz cv logo 4

Data: 2013

Identificador Persistente: http://hdl.handle.net/1822/24930

Origem: RepositóriUM - Universidade do Minho


Descrição
Degradation of xenobiotics by microbial populations is a potential method to enhance the effectiveness of ex situ or in situ bioremediation. The purpose of this study was to evaluate the impact of repeated metalaxyl and folpet treatments on soil microbial communities and to select soil fungal strains able to degrade these fungicides. Results showed enhanced degradation of metalaxyl and folpet in vineyards soils submitted to repeated treatments with these fungicides. Indeed, the greatest degradation ability was observed in vineyard soil samples submitted to greater numbers of treatments. Respiration activities, as determined in the presence of selective antibiotics in soil suspensions amended with metalaxyl and folpet, showed that the fungal population was the microbiota community most active in the degradation process. Batch cultures performed with a progressive increase of fungicide concentrations allowed the selection of five tolerant fungal strains: Penicillium sp. 1 and Penicillium sp. 2, mycelia sterila 1 and 3, and Rhizopus stolonifer. Among these strains, mycelium sterila 3 and R. stolonifer presented only in vineyard soils treated with repeated application of these fungicides and showed tolerance >1,000 mg l−1 against commercial formulations of metalaxyl (10 %) plus folpet (40 %). Using specific methods for inducing sporulation, mycelium sterila 3 was identified as Gongronella sp. Because this fungus is rare, it was compared using csM13-polymerase chain reaction (PCR) with the two known species, Gongronella butleri and G. lacrispora. The high tolerance to metalaxyl and folpet shown by Gongronella sp. and R. stolonifer might be correlated with their degradation ability. Our results point out that selected strains have potential for the bioremediation of metalaxyl and folpet in polluted soil sites.
Tipo de Documento Artigo
Idioma Inglês
delicious logo  facebook logo  linkedin logo  twitter logo 
degois logo
mendeley logo

Documentos Relacionados



    Financiadores do RCAAP

Fundação para a Ciência e a Tecnologia Universidade do Minho   Governo Português Ministério da Educação e Ciência Programa Operacional da Sociedade do Conhecimento União Europeia