Detalhes do Documento

Evolving time series forecasting ARMA models

Autor(es): Cortez, Paulo, 1971- cv logo 1 ; Rocha, Miguel cv logo 2

Data: 2004

Identificador Persistente: http://hdl.handle.net/1822/2221

Origem: RepositóriUM - Universidade do Minho

Assunto(s): ARMA models; Evolutionary algorithms; Bayesian information criterion; Model selection; Time series analysis


Descrição
Nowadays, the ability to forecast the future, based only on past data, leads to strategic advantages, which may be the key to success in organizations. Time Series Forecasting (TSF) allows the modeling of complex systems as ``black-boxes'', being a focus of attention in several research arenas such as Operational Research, Statistics or Computer Science. Alternative TSF approaches emerged from the Artificial Intelligence arena, where optimization algorithms inspired on natural selection processes, such as Evolutionary Algorithms (EAs), are popular. The present work reports on a two-level architecture, where a (meta-level) binary EA will search for the best AutoRegressive Moving-Average (ARMA) model, being the parameters optimized by a (low-level) EA, which encodes real values. The handicap of this approach is compared with conventional forecasting methods, being competitive.
Tipo de Documento Artigo
Idioma Inglês
delicious logo  facebook logo  linkedin logo  twitter logo 
degois logo
mendeley logo

Documentos Relacionados



    Financiadores do RCAAP

Fundação para a Ciência e a Tecnologia Universidade do Minho   Governo Português Ministério da Educação e Ciência Programa Operacional da Sociedade do Conhecimento União Europeia