Detalhes do Documento

Evolutionary neural network learning

Autor(es): Rocha, Miguel cv logo 1 ; Cortez, Paulo, 1971- cv logo 2 ; Neves, José cv logo 3

Data: 2003

Identificador Persistente: http://hdl.handle.net/1822/2219

Origem: RepositóriUM - Universidade do Minho

Assunto(s): Neural network training; MultiLayer perceptrons; Evolutionary algorithms; Lamarckian optimization


Descrição
Several gradient-based methods have been developed for Artificial Neural Network (ANN) training. Still, in some situations, such procedures may lead to local minima, making Evolutionary Algorithms (EAs) a promising alternative. In this work, EAs using direct representations are applied to several classification and regression ANN learning tasks. Furthermore, EAs are also combined with local optimization, under the Lamarckian framework. Both strategies are compared with conventional training methods. The results reveal an enhanced performance by a macro-mutation based Lamarckian approach.
Tipo de Documento Documento de conferência
Idioma Inglês
delicious logo  facebook logo  linkedin logo  twitter logo 
degois logo
mendeley logo

Documentos Relacionados



    Financiadores do RCAAP

Fundação para a Ciência e a Tecnologia Universidade do Minho   Governo Português Ministério da Educação e Ciência Programa Operacional da Sociedade do Conhecimento União Europeia