Document details

Study of solids conveying in single screw extruders based on flow dynamics and ...

Author(s): Michelangelli, O. P. cv logo 1 ; Gaspar-Cunha, A. cv logo 2 ; Covas, J. A. cv logo 3

Date: 2012

Persistent ID: http://hdl.handle.net/1822/21884

Origin: RepositóriUM - Universidade do Minho

Subject(s): DEM; Polymer processing


Description
Flow of granular matter is presently a subject of extensive research, due to the characteristics of this type of systems (e.g., dilatancy, segregation, arching, clustering) and relevance to various application areas, such as civil construction, agriculture, food processing, geophysics, pharmacology [1, 2]. The plasticating process in single screw polymer extrusion is one of the areas where this research can help to increase the existing knowledge. In the initial turns of an Archimedes-type screw, loose pellets are conveyed forward. However, traditional analyses assume the movement of an elastic solid plug at constant velocity. This work follows previous efforts to predict the characteristics of this flow using the Discrete Element Method (DEM) [3, 4]. Two boundary conditions are considered: a) open-discharge, implying that no compaction of the solids occurs and b) close-discharge, leading to a pressure increase. The dynamics and the structure of the flow were studied by computing the cross- and down channel velocity profiles, the coordination number distribution, the output rate, the residence time distribution and the density profile, as a function of the friction force grain-wall, screw speed and pellet size. The model is able to capture the process of plug formation towards the discharge, and its predictions provide an insight into possible flow fluctuations.
Document Type Conference Object
Language English
delicious logo  facebook logo  linkedin logo  twitter logo 
degois logo
mendeley logo

Related documents



    Financiadores do RCAAP

Fundação para a Ciência e a Tecnologia Universidade do Minho   Governo Português Ministério da Educação e Ciência Programa Operacional da Sociedade do Conhecimento EU