Detalhes do Documento

Robustness in multi-objective optimization using evolutionary algorithms

Autor(es): Gaspar-Cunha, A. cv logo 1 ; Covas, J. A. cv logo 2

Data: 2008

Identificador Persistente: http://hdl.handle.net/1822/19390

Origem: RepositóriUM - Universidade do Minho

Assunto(s): Multi-objective optimization; Evolutionary algorithms; Robustness


Descrição
This work discusses robustness assessment during multi-objective optimization with a Multi-Objective Evolutionary Algorithm (MOEA) using a combination of two types of robustness measures. Expectation quantifies simultaneously fitness and robustness, while variance assesses the deviation of the original fitness in the neighborhood of the solution. Possible equations for each type are assessed via application to several benchmark problems and the selection of the most adequate is carried out. Diverse combinations of expectation and variance measures are then linked to a specific MOEA proposed by the authors, their selection being done on the basis of the results produced for various multi-objective benchmark problems. Finally, the combination preferred plus the same MOEA are used successfully to obtain the fittest and most robust Pareto optimal frontiers for a few more complex multi-criteria optimization problems.
Tipo de Documento Artigo
Idioma Inglês
delicious logo  facebook logo  linkedin logo  twitter logo 
degois logo
mendeley logo

Documentos Relacionados



    Financiadores do RCAAP

Fundação para a Ciência e a Tecnologia Universidade do Minho   Governo Português Ministério da Educação e Ciência Programa Operacional da Sociedade do Conhecimento União Europeia