Detalhes do Documento

Feature selection using multi-objective evolutionary algorithms : application t...

Autor(es): Gaspar-Cunha, A. cv logo 1

Data: 2010

Identificador Persistente: http://hdl.handle.net/1822/17537

Origem: RepositóriUM - Universidade do Minho


Descrição
An optimization methodology based on the use of Multi-Objective Evolutionary Algorithms (MOEA) in order to deal with problems of feature selection in data mining was proposed. For that purpose a Support Vector Machines (SVM) classifier was adopted. The aim being to select the best features and optimize the classifier parameters simultaneously while minimizing the number of features necessary and maximize the accuracy of the classifier and/or minimize the errors obtained. The validity of the methodology proposed was tested in a problem of cardiac Single Proton Emission Computed Tomography (SPECT). The results obtained allow one to conclude that MOEA is an efficient feature selection approach and the best results were obtained when the accuracy, the errors and the classifiers parameters are optimized simultaneously.
Tipo de Documento Documento de conferência
Idioma Inglês
delicious logo  facebook logo  linkedin logo  twitter logo 
degois logo
mendeley logo

Documentos Relacionados



    Financiadores do RCAAP

Fundação para a Ciência e a Tecnologia Universidade do Minho   Governo Português Ministério da Educação e Ciência Programa Operacional da Sociedade do Conhecimento União Europeia