Detalhes do Documento

Evaluating evolutionary multiobjective algorithms for the in silico optimizatio...

Autor(es): Maia, Paulo cv logo 1 ; Rocha, I. cv logo 2 ; Ferreira, E. C. cv logo 3 ; Rocha, Miguel cv logo 4

Data: 2008

Identificador Persistente: http://hdl.handle.net/1822/16649

Origem: RepositóriUM - Universidade do Minho

Assunto(s): Multiobjective evolutionary algorithms; Metabolic engineering; Flux-balance analysis; Systems biology


Descrição
In Metabolic Engineering, the identification of genetic manipulations that lead to mutant strains able to produce a given compound of interest is a promising, while still complex process. Evolutionary Algorithms (EAs) have been a successful approach for tackling the underlying in silico optimization problems. The most common task is to solve a bi-level optimization problem, where the strain that maximizes the production of some compound is sought, while trying to keep the organism viable (maximizing biomass). In this work, this task is viewed as a multiobjective optimization problem and an approach based on multiobjective EAs is proposed. The algorithms are validated with a real world case study that uses E. coli to produce succinic acid. The results obtained are quite promising when compared to the available single objective algorithms.
Tipo de Documento Documento de conferência
Idioma Inglês
delicious logo  facebook logo  linkedin logo  twitter logo 
degois logo
mendeley logo

Documentos Relacionados



    Financiadores do RCAAP

Fundação para a Ciência e a Tecnologia Universidade do Minho   Governo Português Ministério da Educação e Ciência Programa Operacional da Sociedade do Conhecimento União Europeia