Detalhes do Documento

Using text mining techniques for classical music scores analysis

Autor(es): Simões, Alberto cv logo 1 ; Lourenço, Anália cv logo 2 ; Almeida, J. J. cv logo 3

Data: 2007

Identificador Persistente: http://hdl.handle.net/1822/16440

Origem: RepositóriUM - Universidade do Minho

Assunto(s): Music mining; Music score mining; Document classification


Descrição
Music Classification is a particular area of Computational Musicology that provides valuable insights about the evolving of compo- sition patterns and assists in catalogue generation. The proposed work detaches from former works by classifying music based on music score in- formation. Text Mining techniques support music score processing while Classification techniques are used in the construction of decision mod- els. Although research is still at its earliest beginnings, the work already provides valuable contributes to symbolic music representation process- ing and subsequent analysis. Score processing involved the counting of ascending and descending chromatic intervals, note duration and meta- information tagging. Analysis involved feature selection and the evalu- ation of several data mining algorithms, ensuring extensibility towards larger repositories or more complex problems. Experiments report the analysis of composition epochs on a subset of the Mutopia project open archive of classical LilyPond-annotated music scores.
Tipo de Documento Artigo
Idioma Inglês
delicious logo  facebook logo  linkedin logo  twitter logo 
degois logo
mendeley logo

Documentos Relacionados



    Financiadores do RCAAP

Fundação para a Ciência e a Tecnologia Universidade do Minho   Governo Português Ministério da Educação e Ciência Programa Operacional da Sociedade do Conhecimento União Europeia