Detalhes do Documento

Models and algorithms for hard optimization problems

Autor(es): Macedo, Rita cv logo 1

Data: 2011

Identificador Persistente: http://hdl.handle.net/1822/14215

Origem: RepositóriUM - Universidade do Minho


Descrição
This thesis is devoted to exact solution methods for NP-hard integer programming models. We consider two of these problems, the cutting stock problem and the vehicle routing problem. Both problems have been studied for several decades by researchers and practitioners of the Operations Research eld. Their interest and contribution to real-world applications in business, industry and several kinds of organizations are irrefutable. Our solution approaches are always exact. We contribute with new lower bounds, families of valid inequalities, integer programming models and exact algorithms for the problems we explore. More precisely, we address two variants of each of the referred problems. In what concerns cutting stock problems, we analyze the one-dimensional pattern minimization problem and the two-dimensional cutting stock problem with the guillotine constraint. The one-dimensional pattern minimization problem is a cutting and packing problem that becomes relevant in situations where changing from one pattern to another involves, for example, a cost for setting up the cutting machine. It is the problem of minimizing the number of di erent patterns of a given cutting stock solution. For this problem, we contribute with new lower bounds. The two-dimensional cutting stock problem with the guillotine constraint and two stages is also addressed. We propose a pseudo-polynomial network ow model, along with some reduction criteria to reduce its symmetry. We strengthen the model with a new family of cutting planes and propose a new lower bound. For this variant, we also consider some variations of the problem.Regarding vehicle routing problems, we address the vehicle routing problem with time windows and multiple use of vehicles and the location routing problem, with capacitated vehicles and depots and multiple use of vehicles. The rst of these problems considers the well know case of vehicle routing with time windows with the additional consideration that vehicles can be assigned to several routes within the same planning period. The second variant considers the combination of the rst problem, without time windows, with a location problem. This means that the depots to be used must be selected from a set of available ones. For both of these variants, we propose a network ow model whose nodes of the underlying graph correspond to time instants of the planning period and whose arcs correspond to vehicle routes. We reduce their symmetry by deriving several reduction criteria. For the vehicle routing problem with time windows and multiple use of vehicles, we propose an iterative algorithm to solve the problem exactly. Our proposed procedures are tested and compared with other methods from the literature. All the computational results produced by the series of experiments are presented and discussed. Esta tese e dedicada a métodos de resolução exata para problemas de programação inteira NP-difíceis. São considerados dois desses problemas, nomeadamente o problema de corte e empacotamento e o problema de encaminhamento de veículos. Ambos os problemas têm vindo a ser abordados por investigadores e profissionais da área da Investigação Operacional há já várias décadas. O seu interesse e contribuição para aplicações reais do mundo dos negócios e industria, assim como para inúmeros outros tipos de organizações são, hoje em dia, inegáveis. A nossa abordagem para a resolução dos problemas descritos e exata. Contribuímos com novos limites inferiores, novas famílias de desigualdades validas, novos modelos de programação inteira e algoritmos de resolução exata para os problemas que nos propomos explorar. Em particular, abordamos duas variantes de cada um dos referidos problemas. Em relação ao problema de corte e empacotamento, analisamos o problema de minimização de padrões a uma dimensão e o problema de corte e empacotamento a duas dimensões, com restrição de guilhotina. O problema de minimização de padrões a uma dimensão e pertinente em situações em que a mudança de padrão envolve, por exemplo, custos de reconfiguração nas máquinas de corte. E o problema de minimização do numero de padrões diferentes de uma dada solução de um problema de corte. Para este problema contribuímos com novos limites inferiores. O problema de corte e empacotamento a duas dimensões com restrição de guilhotina e dois estágios e também abordado. Propomos um modelo pseudopolinomial de rede de fluxos, assim como critérios de redução que eliminam parte da sua simetria. Reforçamos o modelo com uma nova família de planos de corte e propomos novos limites inferiores. Para esta variante, consideramos também outras variações do problema original. No que se refere ao problema de encaminhamento de veículos, abordamos um problema de encaminhamento de veículos com janelas temporais e múltiplas viagens, e também um problema de localização e encaminhamento de veículos com capacidades nos veículos e depósitos e múltiplo uso dos veículos. O primeiro destes problemas considera o conhecido caso de encaminhamento de veículos com janelas temporais, com a consideração adicional de que os veículos podem ser alocados a v arias rotas no decurso do mesmo período de planeamento. A segunda variante considera a combinação do primeiro problema, embora sem janelas temporais, com um problema de localização. Isto significa que os depósitos a usar são selecionados de um conjunto de localizações disponíveis. Para ambas as variantes, propomos um modelo pseudo-polinomial de rede de fluxos cujos nodos do grafo correspondente representam instantes de tempo do período de planeamento, e cujos arcos representam rotas. Derivamos critérios de redução com o intuito de reduzir a simetria. Para o problema com janelas temporais e múltiplas viagens, propomos um algoritmo iterativo que o resolve de forma exata. Os procedimentos propostos são testados e comparados com outros métodos da literatura. Todos os resultados obtidos pelas experiencias computacionais são apresentados e discutidos.
Tipo de Documento Tese de Doutoramento
Idioma Inglês
Orientador(es) Alves, Cláudio Manuel Martins; Carvalho, J. M. Valério de
delicious logo  facebook logo  linkedin logo  twitter logo 
degois logo
mendeley logo


    Financiadores do RCAAP

Fundação para a Ciência e a Tecnologia Universidade do Minho   Governo Português Ministério da Educação e Ciência Programa Operacional da Sociedade do Conhecimento União Europeia