Document details

Comparison of Mixture and Classification Maximum Likelihood Approaches in Poiss...

Author(s): Faria, Susana cv logo 1 ; Soromenho, Gilda cv logo 2

Date: 2008

Persistent ID: http://hdl.handle.net/10451/4713

Origin: Repositório da Universidade de Lisboa

Subject(s): Simulation study; EM algorithm; Mixture Poisson Regression Models; Classification EM algorithm


Description
In this work, we propose to compare two algorithms to compute maximum likelihood estimators of the parameters of a mixture Poisson regression models. To estimate these parameters, we may use the EM algorithm in a mixture approach or the CEM algorithm in a classification approach. The comparison of the two procedures was done through a simulation study of the performance of these approaches on simulated data sets in a target number of iterations. Simulation results show that the CEM algorithm is a good alternative to the EM algorithm for fitting Poisson mixture regression models, having the advantage of converging more quickly.
Document Type Conference Object
Language English
delicious logo  facebook logo  linkedin logo  twitter logo 
degois logo
mendeley logo

Related documents



    Financiadores do RCAAP

Fundação para a Ciência e a Tecnologia Universidade do Minho   Governo Português Ministério da Educação e Ciência Programa Operacional da Sociedade do Conhecimento EU