Document details

Fitting mixtures of linear regressions

Author(s): Faria, Susana cv logo 1 ; Soromenho, Gilda cv logo 2

Date: 2010

Persistent ID: http://hdl.handle.net/10451/4682

Origin: Repositório da Universidade de Lisboa

Subject(s): Mixture of linear regressions; Classification EM algorithm


Description
In most applications, the parameters of a mixture of linear regression models are estimated by maximum likelihood using the expectation maximization (EM) algorithm. In this article, we propose the comparison of three algorithms to compute maximum likelihood estimates of the parameters of these models: the EM algorithm, the classification EM algorithm and the stochastic EM algorithm. The comparison of the three procedures was done through a simulation study of the performance (computational effort, statistical properties of estimators and goodness of fit) of these approaches on simulated data sets. Simulation results show that the choice of the approach depends essentially on the configuration of the true regression lines and the initialization of the algorithms.
Document Type Article
Language English
delicious logo  facebook logo  linkedin logo  twitter logo 
degois logo
mendeley logo


    Financiadores do RCAAP

Fundação para a Ciência e a Tecnologia Universidade do Minho   Governo Português Ministério da Educação e Ciência Programa Operacional da Sociedade do Conhecimento EU