Detalhes do Documento

Duodenal Cytochrome B and Hephaestin Expression is Regulated by the Soluble HFE...

Autor(es): Silva, Bruno cv logo 1 ; Martins, Rute cv logo 2 ; Proença, Daniela cv logo 3 ; Faustino, Paula cv logo 4

Data: 2013

Identificador Persistente: http://hdl.handle.net/10400.18/1574

Origem: Repositório Científico do Instituto Nacional de Saúde

Assunto(s): Metabolismo do Ferro; HFE; Isoforma; Doenças Genéticas


Descrição
INTRODUCTION: Hereditary Hemochromatosis is an autosomal recessive disorder characterized by excessive intestinal iron absorption and iron deposition in organs such as liver, heart and pancreas, potentially leading to cirrhosis, hepatocelular carcinoma, diabetes, cardiac failure and arthritis. This disorder is mainly due to mutations in HFE gene. HFE protein associates with beta-2 microglobulin (B2M) for trafficking to the cell surface. However, the HFE’s role on iron homeostasis is not completely cleared. It may regulate hepcidin expression in the liver and iron trafficking in the duodenum. Several HFE alternative splicing transcripts have been reported, but their structural and functional characterization have been poorly studied. MATERIALS AND METHODS: Aiming to investigate the putative biological role of an alternative HFE transcript originated by the intron 4 inclusion, we measured its expression level in several human tissues by quantitative Real-Time PCR. Also, we produced the corresponding GFP-tagged HFE variant. HepG2 cells were transfected with this construct and protein cellular location analyzed by immunofluorescence, using B2M, TfR1 and calnexin antibodies. In parallel, immunoprecipitation was performed. Finally the intron 4 inclusion variant was over-expressed in a human duodenum adenocarcinoma cell line (Hutu-80) under normal and iron overload conditions and the expression of several iron metabolism genes (TFR1, DMT1, DCYTB, SLC40A1 and HEPH) evaluated by quantitative Real-Time PCR. RESULTS: We have found that the intron 4 inclusion transcript has an ubiquitous expression in the analyzed tissues, being its relative expression higher in duodenum and lower in the liver. Also, we found that this variant gives rise to a truncated protein (sHFE) that is secreted by the cells and is able to maintain its interaction with B2M. Its overexpression in HuTu-80 cells showed that sHFE down-regulates the duodenal cytochrome b (CYBRD1) expression in about 20% independently of cellular iron status, as it happens with the HFE_full length protein. Also, sHFE seems to be involved in the down-regulation of hephaestin (HEPH) expression, being its effect higher in the presence of iron overload (reduction of ~40 and ~50%, respectively). CONCLUSIONS: Through this study we might have unveiled the contribution of the HFE’s intron 4 inclusion splice variant to the maintenance of iron homeostasis. sHFE may be secreted into the bloodstream and act in remote tissues such as the duodenum, down-regulating the expression of some of the iron metabolism related genes, as CYBRD1 and HEPH, and consequently reducing dietary iron absorption. Also we are currently exploring the hypothesis of a possible effect of sHFE in the expression of other iron metabolism related genes in hepatic cells and macrophages.
Tipo de Documento Documento de conferência
Idioma Inglês
delicious logo  facebook logo  linkedin logo  twitter logo 
degois logo
mendeley logo

Documentos Relacionados



    Financiadores do RCAAP

Fundação para a Ciência e a Tecnologia Universidade do Minho   Governo Português Ministério da Educação e Ciência Programa Operacional da Sociedade do Conhecimento União Europeia