Document details

Predicting the secondary structure of proteins using Machine Learning algorithms

Author(s): Rui Camacho cv logo 1 ; Rita Ferreira cv logo 2 ; Natacha Rosa cv logo 3 ; Vânia Guimarães cv logo 4 ; Nuno A. Fonseca cv logo 5 ; Vítor Santos Costa cv logo 6 ; Miguel de Sousa cv logo 7 ; Alexandre Magalhães cv logo 8

Date: 2012

Persistent ID: http://hdl.handle.net/10216/67119

Origin: Repositório Aberto da Universidade do Porto

Subject(s): Ciências Naturais; Ciências biológicas


Description
The functions of proteins in living organisms are related to their 3-D structure, which is known to be ultimately determined by their linear sequence of amino acids that together form these macromolecules. It is, therefore, of great importance to be able to understand and predict how the protein 3Dstructure arises from a particular linear sequence of amino acids. In this paper we report the application of Machine Learning methods to predict, with high values of accuracy, the secondary structure of proteins, namely α-helices and β-sheets, which are intermediate levels of the local structure.
Document Type Article
Language English
delicious logo  facebook logo  linkedin logo  twitter logo 
degois logo
mendeley logo

Related documents



    Financiadores do RCAAP

Fundação para a Ciência e a Tecnologia Universidade do Minho   Governo Português Ministério da Educação e Ciência Programa Operacional da Sociedade do Conhecimento EU