Detalhes do Documento

A Software Framework for Building Biomedical Machine Learning Classifiers throu...

Autor(es): Raul Pollán cv logo 1 ; Miguel Angel Guevara Lopez cv logo 2 ; Eugénio da Costa Oliveira cv logo 3

Data: 2011

Identificador Persistente: http://hdl.handle.net/10216/54348

Origem: Repositório Aberto da Universidade do Porto

Assunto(s): Ciências Físicas; Ciência de computadores; Informática


Descrição
This paper describes the BiomedTK software framework, created to perform massive explorations of machine learning classifiers configurations for biomedical data analysis over distributed Grid computing resources. BiomedTK integrates ROC analysis throughout the complete classifier construction process and enables explorations of large parameter sweeps for training third party classifiers such as artificial neural networks and support vector machines, offering the capability to harness the vast amount of computing power serviced by Grid infrastructures. In addition, it includes classifiers modified by the authors for ROC optimization and functionality to build ensemble classifiers and manipulate datasets (import/export, extract and transform data, etc.). BiomedTK was experimentally validated by training thousands of classifier configurations for representative biomedical UCI datasets reaching in little time classification levels comparable to those reported in existing literature. The comprehensive method herewith presented represents an improvement to biomedical data analysis in both methodology and potential reach of machine learning based experimentation. This paper describes the BiomedTK software framework, created to perform massive explorations of machine learning classifiers configurations for biomedical data analysis over distributed Grid computing resources. BiomedTK integrates ROC analysis throughout the complete classifier construction process and enables explorations of large parameter sweeps for training third party classifiers such as artificial neural networks and support vector machines, offering the capability to harness the vast amount of computing power serviced by Grid infrastructures. In addition, it includes classifiers modified by the authors for ROC optimization and functionality to build ensemble classifiers and manipulate datasets (import/export, extract and transform data, etc.). BiomedTK was experimentally validated by training thousands of classifier configurations for representative biomedical UCI datasets reaching in little time classification levels comparable to those reported in existing literature. The comprehensive method herewith presented represents an improvement to biomedical data analysis in both methodology and potential reach of machine learning based experimentation.
Tipo de Documento Artigo
Idioma Inglês
delicious logo  facebook logo  linkedin logo  twitter logo 
degois logo
mendeley logo

Documentos Relacionados



    Financiadores do RCAAP

Fundação para a Ciência e a Tecnologia Universidade do Minho   Governo Português Ministério da Educação e Ciência Programa Operacional da Sociedade do Conhecimento União Europeia