Document details

Improving lipoplex-mediated gene transfer into C6 glioma cells and primary neurons

Author(s): Girão da Cruz, M. Teresa cv logo 1 ; Simões, Sérgio cv logo 2 ; Pedroso de Lima, Maria C. cv logo 3

Date: 2004

Persistent ID: http://hdl.handle.net/10316/3867

Origin: Estudo Geral - Universidade de Coimbra

Subject(s): Cationic liposome; Lipoplex; Transferrin; C6 cells; Hippocampal neurons; Cortical neurons


Description
The development of methodologies for gene transfer into the central nervous system is crucial for gene therapy of neurological disorders. In this study, different cationic liposome formulations were used to transfer DNA into C6 glioma cells and primary hippocampal and cortical neurons by varying the nature of the helper lipid (DOPE, Chol) or a mixture of DOPE and cholesterol (Chol) associated to DOTAP. In addition, the effect of the lipid/DNA (+/-) charge ratio, the association of the ligand transferrin to the lipoplexes, and the stage of differentiation of the primary cells on the levels of transfection activity, transfection efficiency, and duration of gene expression were evaluated. Mechanistic studies were also performed to investigate the route of delivery of the complexes into neurons. Our results indicate that DOTAP:Chol (1:1 mol ratio) was the best formulation to transfer a reporter gene into C6 glioma cells, primary hippocampal neurons, and primary cortical neurons. The use of transferrin-associated lipoplexes resulted in a significant enhancement of transfection activity, as compared to plain lipoplexes, which can be partially attributed to the promotion of their internalization mediated by transferrin. While for hippocampal neurons the levels of luciferase gene expression are very low, for primary cortical neurons the levels of transgene expression are high and relatively stable, although only 4% of the cells has been transfected. The stage of cell differentiation revealed to be critical to the levels of gene expression. Consistent with previous findings on the mechanisms of cell internalization, the experiments with inhibitors of the endocytotic pathway clearly indicate that transferrin-associated lipoplexes are internalized into primary neurons by endocytosis. Promising results were obtained in terms of the levels and duration of gene expression, particularly in cortical neurons when transfected with the Tf-associated lipoplexes, this finding suggesting the usefulness of these lipid-based carriers to deliver genes within the CNS. http://www.sciencedirect.com/science/article/B6WFG-4BYR4F1-1/1/41347baa42d3ce3c6f3d95af4d10e615
Document Type Article
Language English
delicious logo  facebook logo  linkedin logo  twitter logo 
degois logo
mendeley logo

Related documents



    Financiadores do RCAAP

Fundação para a Ciência e a Tecnologia Universidade do Minho   Governo Português Ministério da Educação e Ciência Programa Operacional da Sociedade do Conhecimento EU