Document details

p(x)-Harmonic functions with unbounded exponent in a subdomain

Author(s): Manfredi, Juan J. cv logo 1 ; Rossi, Julio D. cv logo 2 ; Urbano, José Miguel cv logo 3

Date: 2008

Persistent ID: http://hdl.handle.net/10316/11222

Origin: Estudo Geral - Universidade de Coimbra

Subject(s): p(x)-Laplacian; Infinity-Laplacian; Viscosity solutions


Description
We study the Dirichlet problem −div( ∇u p(x)−2∇u) = 0 in , with u = f on @ and p(x) = ∞ in D, a subdomain of the reference domain . The main issue is to give a proper sense to what a solution is. To this end, we consider the limit as n → ∞ of the solutions un to the corresponding problem when pn(x) = p(x)∧ n, in particular, with p = n in D. Under suitable assumptions on the data, we find that such a limit exists and that it can be characterized as the unique solution of a variational minimization problem. Moreover, we examine this limit in the viscosity sense and find an equation it satisfies.
Document Type Preprint
Language English
delicious logo  facebook logo  linkedin logo  twitter logo 
degois logo
mendeley logo

Related documents



    Financiadores do RCAAP

Fundação para a Ciência e a Tecnologia Universidade do Minho   Governo Português Ministério da Educação e Ciência Programa Operacional da Sociedade do Conhecimento EU