In this note we study the limit as p(x) ! 1of solutions to − p(x)u = 0 in a domain , with Dirichlet boundary conditions. Our approach consists in considering sequences of variable exponents converging uniformly to +1 and analyzing how the corresponding solutions of the problem converge and what equation is satisfied by the limit.
We study the Dirichlet problem −div( ; ∇u ; p(x)−2∇u) = 0 in , with u = f on @ and p(x) = ∞ in D, a subdomain of the reference domain . The main issue is to give a proper sense to what a solution is. To this end, we consider the limit as n → ∞ of the solutions un to the corresponding problem when pn(x) = p(x)∧ n, in particular, with p = n in D. Under suitable assumptions on the data, we find that such a li...
Financiadores do RCAAP | |||||||
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |