Detalhes do Documento

p(x)-Harmonic functions with unbounded exponent in a subdomain

Autor(es): Manfredi, Juan J. cv logo 1 ; Rossi, Julio D. cv logo 2 ; Urbano, José Miguel cv logo 3

Data: 2008

Identificador Persistente: http://hdl.handle.net/10316/11222

Origem: Estudo Geral - Universidade de Coimbra

Assunto(s): p(x)-Laplacian; Infinity-Laplacian; Viscosity solutions


Descrição
We study the Dirichlet problem −div( ∇u p(x)−2∇u) = 0 in , with u = f on @ and p(x) = ∞ in D, a subdomain of the reference domain . The main issue is to give a proper sense to what a solution is. To this end, we consider the limit as n → ∞ of the solutions un to the corresponding problem when pn(x) = p(x)∧ n, in particular, with p = n in D. Under suitable assumptions on the data, we find that such a limit exists and that it can be characterized as the unique solution of a variational minimization problem. Moreover, we examine this limit in the viscosity sense and find an equation it satisfies.
Tipo de Documento Preprint
Idioma Inglês
delicious logo  facebook logo  linkedin logo  twitter logo 
degois logo
mendeley logo

Documentos Relacionados



    Financiadores do RCAAP

Fundação para a Ciência e a Tecnologia Universidade do Minho   Governo Português Ministério da Educação e Ciência Programa Operacional da Sociedade do Conhecimento União Europeia