Document details

Effect of short-chain primary alcohols on fluidity and activity of sarcoplasmic...

Author(s): Almeida, Leonor M. cv logo 1 ; Vaz, Winchil L. C. cv logo 2 ; Stuempel, Juergen cv logo 3 ; Madeira, Vitor M. C. cv logo 4

Date: 1986

Persistent ID: http://hdl.handle.net/10316/10296

Origin: Estudo Geral - Universidade de Coimbra


Description
Intramolecular excimer formation with the fluorescent probe 1,3-di( 1 -pyrenyl)propane, differential scanning calorimetry, and X-ray diffraction were used to assess the effect of ethanol, 1-butanol, and 1-hexanol on the bilayer organization in model membranes, sarcoplasmic reticulum (SR) lipids and native SR membranes. These alcohols have fluidizing effects on membranes and lower the main transition temperature of dimyristoylphosphatidylcholine (DMPC), but only 1-hexanol alters the cooperativity of the phase transition and significantly increases the thickness of DMPC bilayers. The interaction of the three alcohols with the SR Ca2+ pump was also investigated. Hydrolysis of ATP and coupled Ca2+ uptake are differently sensitive to the three alcohols. Whereas ethanol and I-butanol inhibited the Ca2+ uptake, I-hexanol stimulated it. Nevertheless, the energetic efficiency of the pump (Ca2+/ATP) is not significantly affected by ethanol or 1-hexanol, but uncoupling was observed with 1-butanol at high concentrations. The different effects of alcohols on the activity of SR membranes rule out an unitary mechanism of action on the basis of fluidity changes induced in the lipid bilayer. Depending on the chain length, the alcohols interact with the SR membranes in different domains, perturbing differently the Ca2+-pump activity. http://dx.doi.org/10.1021/bi00365a017
Document Type Article
Language English
delicious logo  facebook logo  linkedin logo  twitter logo 
degois logo
mendeley logo

Related documents



    Financiadores do RCAAP

Fundação para a Ciência e a Tecnologia Universidade do Minho   Governo Português Ministério da Educação e Ciência Programa Operacional da Sociedade do Conhecimento EU