Document details

Probabilistic fuzzy clustering algorithm for fuzzy rules decomposition

Author(s): Salgado, Paulo cv logo 1 ; Igrejas, Getúlio cv logo 2

Date: 2007

Persistent ID: http://hdl.handle.net/10198/2774

Origin: Biblioteca Digital do IPB

Subject(s): Fuzzy clustering


Description
The Fuzzy C-Means (FCM) clustering algorithm is the best known and the most used method for fuzzy clustering and is generally applied to well defined sets of data. In this work a generalized Probabilistic Fuzzy C-Means (PFCM) algorithm is proposed and applied to fuzzy sets clustering. The methodology presented leads to a fuzzy partition of the fuzzy rules, one for each cluster, which corresponds to a new set of fuzzy sub-systems. When applied to the clustering of a flat fuzzy system the result is a set of decomposed sub-systems that will be conveniently linked into a Parallel Collaborative Structure.
Document Type Conference Object
Language English
delicious logo  facebook logo  linkedin logo  twitter logo 
degois logo
mendeley logo

Related documents



    Financiadores do RCAAP

Fundação para a Ciência e a Tecnologia Universidade do Minho   Governo Português Ministério da Educação e Ciência Programa Operacional da Sociedade do Conhecimento EU