Document details

Clustering algorithms for fuzzy rules decomposition

Author(s): Salgado, Paulo cv logo 1 ; Igrejas, Getúlio cv logo 2

Date: 2007

Persistent ID: http://hdl.handle.net/10198/2757

Origin: Biblioteca Digital do IPB

Subject(s): Fuzzy clustering; Rules decomposition


Description
This paper presents the development, testing and evaluation of generalized Possibilistic fuzzy c-means (FCM) algorithms applied to fuzzy sets. Clustering is formulated as a constrained minimization problem, whose solution depends on the constraints imposed on the membership function of the cluster and on the relevance measure of the fuzzy rules. This fuzzy clustering of fuzzy rules leads to a fuzzy partition of the fuzzy rules, one for each cluster, which corresponds to a new set of fuzzy sub-systems. When applied to the clustering of a flat fuzzy system results a set of decomposed sub-systems that will be conveniently linked into a Hierarchical Prioritized Structures.
Document Type Conference Object
Language English
delicious logo  facebook logo  linkedin logo  twitter logo 
degois logo
mendeley logo

Related documents



    Financiadores do RCAAP

Fundação para a Ciência e a Tecnologia Universidade do Minho   Governo Português Ministério da Educação e Ciência Programa Operacional da Sociedade do Conhecimento EU