We consider the energy needed to form a spherical hole or void in a simple metal, modeled as ordinary jellium or stabilized jellium. (Only the latter model correctly predicts positive formation energies for voids in high-density metals.) First we present two Hellmann-Feynman theorems for the void-formation energy 4πR2σRv(n¯) as a function of the void radius R and the positive-background density n¯, which may be...
The void formation energy is the work needed to create the curved surface of a void. For a spherical hole in a homogeneous metal (jellium or stabilized jellium), the void formation energy is calculated for large radii from the liquid-drop model (surface plus curvature terms), and for small radii from perturbation theory. A Padé approximation is proposed to link these limits. For radii greater than or equal to t...
Financiadores do RCAAP | |||||||
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |