In this study, the stability and biocompatibility of methacrylated gellan gum hydrogels, obtained either by ionic- (iGG-MA) or photo-crosslinking (phGGMA), were evaluated in vitro and in vivo. Size exclusion chromatography analysis of the methacrylated gellan gum (GG-MA) powder revealed that molecular weight is lower as compared to the non-modifi ed material, i.e., low acyl gellan gum. The water uptake and swel...
Ionic- (iGG-MA) and photo-crosslinked (phGG-MA) methacrylated gellan gum hydrogels have been proposed as biomaterials for supporting nucleus pulposus (NP) regeneration and/or repair. In this study, the mechanical stability and biocompatibility of these hydrogels have been evaluated in vitro. Human intervertebral disc cells obtained from herniated patients were cultured within both hydrogels, for 1–21 days. Dyna...
Methacrylated gellan gum hydrogels, obtained either by ionic- (iGGMA) and photo-crosslinking (phGG-MA), have been investigated as potential biomaterials for supporting nucleus pulposus (NP) regeneration and/or repair [1,2]. In previous work, some advantages were attributed to GG-MA hydrogels, such as: (i) the possibility to control endothelial cells infiltration and blood vessel ingrowth’s, (ii) tunable and imp...
Financiadores do RCAAP | |||||||
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |