Providing adequate vascularization is one of the main hurdles to the widespread clinical application of bone tissue engineering approaches. Due to their unique role in blood vessel formation, endothelial cells (EC) play a key role in the establishment of successful vascularization strategies. However, currently available polymeric materials do not generally support EC growth without coating with adhesive protei...
The reconstruction of bone defects based on cell-seeded constructs requires a functional microvasculature that meets the metabolic demands of the engineered tissue. Therefore, strategies that augment neovascularization need to be identified. We propose an in vitro strategy consisting of the simultaneous culture of osteoblasts and endothelial cells on a starch-based scaffold for the formation of pre-vascular str...
Presently the majority of tissue engineering approaches aimed at regenerating bone relies only on postimplantation vascularization. Strategies that include seeding endothelial cells (ECs) on biomaterials and promoting their adhesion, migration and functionality might be a solution for the formation of vascularized bone. Nano/micro-fiber-combined scaffolds have an innovative structure, inspired by extracellular ...
The establishment of a functional vasculature is as yet an unrealized milestone in bone reconstruction therapy. For this study, fibermesh scaffolds obtained from a blend of starch and poly(caprolactone) (SPCL), that have previously been shown to be an excellent material for the proliferation and differentiation of bone marrow cells and thereby represent great potential as constructs for bone regeneration, were ...
Financiadores do RCAAP | |||||||
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |